AI부트캠프(38)
-
경기도미래기술학교 AI개발자 부트캠프 51일차 TIL- 국민행복도 분석.
hue는 꼭 해줘야 한다. 안하면 통자로 나온다. 그리고 안에 컬러를 채우지 않았더니 이렇게 뭔가 핏줄처럼 나왔다. import random #hexadecimal 형식으로 랜덤 색 선택 def rand_color(): return "#" + "".join([random.choice('0123456789ABCDEF') for _ in range(6)]) plt.figure(figsize=(15,5)) sns.kdeplot(data=df, x=df['Ladder score'],hue='Regional indicator') plt.title("지역별 행복지수 분포") plt.axvline(df['Ladder score'].mean(), c='black', ls='--') import random #hexad..
2023.07.18 -
경기도미래기술학교 AI개발자 부트캠프 37일차 - 클러스터링(Clustering) 공부하기.
챗 GPT에 클러스터링이 어떤 곳에 활용되는지 물어보자. 대표적인 군집화 알고리즘으로는 K-Means, Mean Shift, Gaussian Mixture Model, DBScan이 있다. import numpy as np import matplotlib.pyplot as plt def euclidean_distance(x1, y1, x2, y2): result = (((y1-x1)**2) + ((y2-x2)**2)) ** 0.5 return result n_classes = 4 n_data = 100 X, y = [], [] for class_idx in range(n_classes): centroid = np.random.uniform(low=-10, high=10, size=(2,)) X_ = np..
2023.06.30 -
경기도미래기술학교 AI개발자 부트캠프 36일차 TIL- KNN 알고리즘 디시전 바운더리까지.
import numpy as np import matplotlib.pyplot as plt # np.random.seed(22) K = 5 n_classes = 4 n_data = 50 X, y = [], [] for class_idx in range(n_classes): centroid = np.random.uniform(low=-10, high=10, size=(2,)) X_ = np.random.normal(loc=centroid, scale=1.7, size=(n_data, 2)) y_ = np.ones(n_data,) * class_idx X.append(X_); y.append(y_) X = np.vstack(X) y = np.concatenate(y) # print(X.shape, y.sha..
2023.06.29 -
경기도미래기술학교 AI개발자 부트캠프 35일차 TIL- KNN 알고리즘 그려보기.
import numpy as np import matplotlib.pyplot as plt def euclidean_distance(x1, y1, x2, y2): result = (((y1-x1)**2) + ((y2-x2)**2)) ** 0.5 return result n_classes = 4 n_data = 100 X, y = [], [] for class_idx in range(n_classes): centroid = np.random.uniform(low=-10, high=10, size=(2,)) X_ = np.random.normal(loc=centroid, scale=2, size=(n_data, 2)) y_ = class_idx * np.ones(n_data,) X.append(X_) y.a..
2023.06.28 -
경기도미래기술학교 AI개발자 부트캠프 33일차 TIL- 혼자서 예측 프로그램 만들어보기.
1. 당뇨, 2. 자전거, 3. 골프 회원 의 세 가지를 예측하여 만드는 과제를 받았다. 근데 하나도 몰라서.. 약간 하기 싫었다가 주말에 기초강의를 다시 보고 다시 보니까 조금 이해가 가는 부분. 월요일에 재설명 해주시겠지?? ㅎㅎ 아마 낸 사람 많이 없을 것이다. 수업시간에 따라잡고 공부 열심히 하면 된다. from sklearn.datasets import load_diabetes from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier from sklearn.tree import DecisionTreeRegressor from sklearn.tree import plot_tr..
2023.06.26 -
경기도미래기술학교 AI개발자 부트캠프 32일차 TIL- DecisionTreeClassifier
내가 분석할 데이터를 받았을 때는 제일 먼저 해야 하는 일이 이것이다. 데이터의 타입이 어떤지 쉐이프 얼마나 긴지, 오브젝트 정보는 어떤지 등을 확인해야 한다. from sklearn.datasets import load_iris import numpy as np iris = load_iris() print(type(iris), '\n') for attr in dir(iris): if not attr.startswith('_'): print(attr) print('=======iris data=======') print(f"type: {type(iris.data)}") print(f"shape: {iris.data.shape}") print(f"dtype: {iris.data.dtype}") print(..
2023.06.23