인공지능개발자(41)
-
경기도미래기술학교 AI개발자 부트캠프 42일차 TIL- 베이즈 정리 실습.
https://www.notion.so/Bayes-Classifier-Project-ffa984d1e998432190d4f26644c65f6c 그렇게 어렵지는 않았다. 응용 문제들.
2023.07.09 -
경기도미래기술학교 AI개발자 부트캠프 41일차 TIL- 베이즈 정리 복습의 복습.
약간 킹벽하게 정리가 된 부분이다. 이번에는 문제가 눈앞에 단지가 하나 있고(X 혹은 Y), 단지 X에는 흰공 9개, 검은 공 1개. 단지 Y에는 흰공 두 개와 검은 공 여덟개다. Prior, likelihood, joint, posterior를 각각 구하는 것이었다. Prior : 잘 모를 때의 확률. X혹은 Y단지일테니까 엄대엄이 다. 5:5 likelihood : X가 흰색일 확률, X가 Y의 확률. Y가 흰색일 확률, Y가 검은색일 확률을 각각 구하는 것이다. 우리가 흔히 하는 확률 분류. joint : Prior와 likelihood를 곱한 값. Posterior : 그 단지의 joint /선택한 공의 총 joint 를 구하면 된다. # import pandas as pd # def update..
2023.07.05 -
경기도미래기술학교 AI개발자 부트캠프 40일차 TIL- 베이즈 정리 계속.
https://www.youtube.com/watch?v=Y4ecU7NkiEI&t=275s 어제 만든 여아의 부모 추정(?)을 함수화 해서 코딩을 다시 만들었다. import pandas as pd def calculate_posterior(df): total_probability = (df['birth_princess_likelihood'] * df['birth_princess_ratio']).sum() print('total_probability:',total_probability) df['posterior_probability'] = df['birth_princess_likelihood'] * df['birth_princess_ratio'] / total_probability return df ta..
2023.07.04 -
경기도미래기술학교 AI개발자 부트캠프 37일차 - 클러스터링(Clustering) 공부하기.
챗 GPT에 클러스터링이 어떤 곳에 활용되는지 물어보자. 대표적인 군집화 알고리즘으로는 K-Means, Mean Shift, Gaussian Mixture Model, DBScan이 있다. import numpy as np import matplotlib.pyplot as plt def euclidean_distance(x1, y1, x2, y2): result = (((y1-x1)**2) + ((y2-x2)**2)) ** 0.5 return result n_classes = 4 n_data = 100 X, y = [], [] for class_idx in range(n_classes): centroid = np.random.uniform(low=-10, high=10, size=(2,)) X_ = np..
2023.06.30 -
경기도미래기술학교 AI개발자 부트캠프 36일차 TIL- KNN 알고리즘 디시전 바운더리까지.
import numpy as np import matplotlib.pyplot as plt # np.random.seed(22) K = 5 n_classes = 4 n_data = 50 X, y = [], [] for class_idx in range(n_classes): centroid = np.random.uniform(low=-10, high=10, size=(2,)) X_ = np.random.normal(loc=centroid, scale=1.7, size=(n_data, 2)) y_ = np.ones(n_data,) * class_idx X.append(X_); y.append(y_) X = np.vstack(X) y = np.concatenate(y) # print(X.shape, y.sha..
2023.06.29 -
경기도미래기술학교 AI개발자 부트캠프 35일차 TIL- KNN 알고리즘 그려보기.
import numpy as np import matplotlib.pyplot as plt def euclidean_distance(x1, y1, x2, y2): result = (((y1-x1)**2) + ((y2-x2)**2)) ** 0.5 return result n_classes = 4 n_data = 100 X, y = [], [] for class_idx in range(n_classes): centroid = np.random.uniform(low=-10, high=10, size=(2,)) X_ = np.random.normal(loc=centroid, scale=2, size=(n_data, 2)) y_ = class_idx * np.ones(n_data,) X.append(X_) y.a..
2023.06.28